22/03/2024
28,721 lượt đọc
Cách lấy dữ liệu bằng thư viện Vnstock
Tiếp nối phần trước về cách lấy dữ liệu bằng VNQuant. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác là Vnstock và thư viện này cũng dùng chung nền tảng là Python. Vnstock là thư viện Python được thiết kế bởi tác giả Vũ Thịnh nhằm để tải dữ liệu chứng khoán Việt Nam một cách dễ dàng và hoàn toàn miễn phí. Thư viện này sử dụng các nguồn cấp dữ liệu đáng tin cậy từ công ty chứng khoán và công ty phân tích thị trường tại Việt Nam. Gói này cũng được thiết kế dựa trên nguyên tắc về sự đơn giản và mã nguồn mở, hầu hết các hàm được viết dựa trên thư viện request và pandas có sẵn trên môi trường Google Colab do đó người dùng không cần cài đặt thêm các gói thư viện kèm theo.
Hình 1.1. Danh sách mã chỉ số
Hình 1.2. Dữ liệu lịch sử giá của hợp đồng tương lai VN30F1M
Hình 1.3. Dữ liệu khớp lệnh trong ngày giao dịch
Hình 1.4. Dữ liệu lịch sử của VNINDEX
Hình 1.5. Xuất file dữ liệu để sẵn sàng sử dụng với Amibroker
Hình 1.6. Biểu đồ nến và khối lượng của MWG
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 2: Download dữ liệu từ thư viện Vnstock
Trên đây là một số ưu, nhược điểm của thư viện Vnstock mà QM Capital đã tổng hợp, hẹn mọi người trong bài viết sau về cách lấy dữ liệu từ các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed .
0 / 5
Bạn có bao giờ tự hỏi vì sao người ta không chỉ quan tâm “lỗ bao nhiêu phần trăm” mà còn phải lo “lỗ mất bao lâu”? Thị trường lên xuống không ngừng, khoảng thời gian mất mát vốn cũng mang ý nghĩa không kém phần quan trọng. Đó chính là lúc khái niệm Drawdown Duration trở nên phổ biến
Trong ngôn ngữ định lượng, alpha là phần lợi nhuận vượt chuẩn (benchmark-adjusted return), tức lợi nhuận mà nhà đầu tư tạo ra ngoài những gì có thể lý giải bằng yếu tố thị trường chung (beta).
Trong lĩnh vực Quantitative Trading (giao dịch định lượng), Z-Test không chỉ là công cụ thống kê lý thuyết, mà còn là phương pháp đánh giá hiệu quả chiến lược, kiểm tra giả thuyết về lợi suất và rủi ro danh mục. Thông qua Z-Test, các quants có thể so sánh lợi suất thực tế của chiến lược với mức kỳ vọng, phân tích biến động và xác định xem các tín hiệu giao dịch có khác biệt đáng kể so với thị trường hay chỉ là biến động ngẫu nhiên.
Trong quantitative trading (giao dịch định lượng), khái niệm correlation (tương quan) đóng vai trò nền tảng trong việc phân tích dữ liệu tài chính. Trên thực tế, mọi quyết định giao dịch định lượng đều dựa vào khả năng định lượng mối quan hệ giữa các biến số tài chính, và correlation là thước đo chính xác nhất để làm điều này.
Trong thị trường tài chính hiện nay, tin tức và thông tin về thị trường có thể tác động mạnh mẽ đến sự biến động của giá cả cổ phiếu, chỉ số chứng khoán, hoặc các tài sản khác. Tuy nhiên, một trong những thách thức lớn mà các nhà đầu tư và trader phải đối mặt là việc xử lý một khối lượng lớn thông tin không cấu trúc từ nhiều nguồn khác nhau, chẳng hạn như từ các trang tin tức, mạng xã hội, hay báo cáo kinh tế. Làm thế nào để phân tích chính xác và nhanh chóng những tin tức này để đưa ra quyết định đầu tư hiệu quả? Câu trả lời nằm trong công nghệ Machine Readable News – một công cụ mạnh mẽ giúp khai thác và phân tích tin tức từ nguồn dữ liệu khổng lồ một cách nhanh chóng và hiệu quả.
Trong quá trình theo dõi thị trường tài chính, đặc biệt là chứng khoán, nhà đầu tư thường bị cuốn vào những biến động ngắn hạn: một cú giảm sâu trong ngày, một tuần đỏ lửa liên tiếp, hay một tin tức bất lợi lan truyền trên báo chí và mạng xã hội. Điều này hoàn toàn dễ hiểu, vì con người thường bị chi phối mạnh mẽ bởi tâm lý mất mát (loss aversion) – tức là nỗi đau khi mất một khoản tiền thường lớn gấp đôi niềm vui khi thu được khoản lợi nhuận tương ứng.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!