10/07/2025
720 lượt đọc
Trong quant trading (giao dịch định lượng), mọi quyết định mà nhà đầu tư đưa ra đều dựa trên một sự thật cốt lõi: thị trường là bất định. Bạn không thể biết chắc ngày mai giá cổ phiếu sẽ tăng hay giảm. Cũng không thể khẳng định chắc chắn mức độ biến động tuần tới là cao hay thấp. Tất cả những yếu tố này đều mang tính ngẫu nhiên và đó là lý do biến ngẫu nhiên (random variable) trở thành nền tảng không thể thiếu trong bất kỳ mô hình định lượng nào.
Biến ngẫu nhiên là một đại lượng số học mà kết quả không cố định, mà thay đổi theo xác suất. Thay vì chỉ có một giá trị cụ thể, biến ngẫu nhiên đại diện cho một phổ giá trị có thể xảy ra, mỗi giá trị đi kèm một xác suất xuất hiện.
Trong trading, bạn đang làm việc với rất nhiều biến ngẫu nhiên mỗi ngày mà có thể bạn không nhận ra:
Hai loại biến ngẫu nhiên thường gặp
Là biến chỉ nhận các giá trị riêng biệt, đếm được – thường là các số nguyên.
Ví dụ:
Ứng dụng:
Các biến rời rạc thường được dùng trong:
Là biến có thể nhận bất kỳ giá trị nào trong một khoảng liên tục, kể cả số thập phân.
Ví dụ:
Ứng dụng:
Đây là loại biến được dùng rộng rãi trong:
Tại sao phải hiểu rõ biến ngẫu nhiên?
Vì gần như mọi mô hình định lượng đều dựa trên giả định về phân phối của biến ngẫu nhiên. Nếu bạn giả định sai – ví dụ nghĩ lợi suất tuân theo phân phối chuẩn khi thực tế lại có tail risk lớn – kết quả mô hình sẽ không phản ánh đúng thị trường.
Hiểu sai biến ngẫu nhiên = định giá sai rủi ro = thua lỗ.
Lợi suất (return) được xem là một biến ngẫu nhiên liên tục. Trong hầu hết các mô hình như CAPM, Black-Scholes, GARCH… chúng ta giả định lợi suất tuân theo phân phối chuẩn hoặc gần chuẩn. Điều này cho phép:
Ví dụ:
Một quỹ định lượng nội địa muốn xây dựng danh mục từ VN30, giả định lợi suất hàng ngày của từng mã là biến chuẩn có độ lệch chuẩn cố định. Từ đó, họ xây dựng chiến lược mean-variance với các constraint theo biến liên tục.
Statistical Arbitrage (StatArb) dựa trên giả định rằng spread (khoảng chênh giá) giữa hai cổ phiếu là biến ngẫu nhiên liên tục, có xu hướng hồi quy về giá trị trung bình (mean reversion)
Khi spread lệch quá xa (thường > 1–2 σ), mô hình ra tín hiệu mua vào hoặc bán khống, kỳ vọng spread sẽ co lại
Các chiến lược pairs trading – một dạng phổ biến của StatArb – là minh chứng thực tiễn khi tận dụng sự ngẫu nhiên trong spread để tạo lợi nhuận
Độ biến động (volatility) cũng là một biến ngẫu nhiên quan trọng – và không phải là hằng số như giả định của Black-Scholes. Các mô hình GARCH, Heston, Stochastic Volatility đều coi volatility là biến ngẫu nhiên động, có thể biến thiên theo thời gian.
→ Hiểu bản chất ngẫu nhiên của volatility giúp bạn thiết kế chiến lược volatility arbitrage – chẳng hạn như long straddle khi market implied vol thấp hơn historical vol.
Trong backtesting, chúng ta mô phỏng kết quả tương lai của chiến lược bằng cách xem lợi suất như biến ngẫu nhiên – và dùng xác suất lịch sử như mẫu để kiểm định tính bền vững.
Monte Carlo Simulation là công cụ quan trọng, giúp bạn:
Monte Carlo hữu ích khi giải quyết những bài toán nhiều chiều (multiple underlyings) mà mô hình phân tích số học hay PDE không giải quyết được hiệu quả
Trong thị trường như Việt Nam – nơi dòng tiền có thể bị ảnh hưởng bởi thông tin vĩ mô, hoạt động tự doanh hay tâm lý FOMO/hoảng loạn – biến ngẫu nhiên không còn “đẹp” như sách vở.
→ Các biến return thường không tuân chuẩn hoàn hảo, mà có tail risk rất lớn, hoặc skew lệch hẳn theo dòng tiền.
Giải pháp của nhà đầu tư định lượng:
Biến ngẫu nhiên là cốt lõi toán học đứng sau mọi chiến lược định lượng. Khi bạn hiểu sâu về nó, bạn không chỉ giỏi hơn trong mô hình hóa – mà còn tránh được ảo tưởng về dữ liệu.
Bởi vì, như một nhà giao dịch lão luyện từng nói:
"Data doesn’t lie – but it doesn’t tell the whole truth either."
0 / 5
Trong quản lý danh mục đầu tư, việc xây dựng mô hình dự báo lợi suất và tối ưu hóa phân bổ tài sản luôn là thách thức lớn. Một trong những vấn đề thường gặp khi huấn luyện mô hình trên dữ liệu lịch sử là hiện tượng overfitting – mô hình “học thuộc lòng” dữ liệu cũ nhưng lại không hoạt động tốt khi áp dụng vào thực tế.
Ngày 19/10/1987 đã đi vào lịch sử tài chính thế giới với tên gọi Black Monday – Thứ Hai Đen tối. Trong một phiên giao dịch duy nhất, chỉ số Dow Jones Industrial Average (DJIA) mất tới 22,6%, tương đương khoảng 500 tỷ USD vốn hóa thị trường bay hơi (theo giá trị năm 1987).
Market Return được định nghĩa là tỷ suất lợi nhuận của market portfolio – danh mục thị trường lý tưởng bao gồm tất cả các tài sản có thể đầu tư trong nền kinh tế, từ cổ phiếu, trái phiếu, bất động sản cho tới hàng hóa và các công cụ phái sinh, với tỷ trọng phân bổ theo đúng giá trị vốn hóa thị trường.
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!