21/03/2024
9,036 lượt đọc
Hiện nay việc ứng dụng công nghệ vào đầu tư chứng khoán ngày càng trở nên phổ biến và việc biết cách ứng dụng chúng vào trong đầu tư chính là lợi thế của bạn. Từ việc nhìn nhận xu hướng, chu kỳ tăng giảm của cổ phiếu, cho đến việc thực hiện kiểm thử hay áp dụng vào các mô hình học máy để dự đoán xu hướng, tất cả đều cần một nguồn dữ liệu đáng tin cậy. Do đó, nhận thấy nhiều người hiện tại vẫn còn đang lấy dữ liệu chứng khoán một cách thủ công nên mình có tổng hợp lại 1 số phương pháp phổ biến trong việc lấy dữ liệu chứng khoán qua những thư viện và chỉ cần với vài dòng code cơ bản trên nền tảng Python sẽ giúp bạn tự động hóa quy trình này rất nhanh và đơn giản.
VNQuant là một thư viện được tạo ra bởi tác giả Phạm Đình Khánh, giúp mọi người truy cập và phân tích dữ liệu thị trường tài chính của Việt Nam. Thư viện này cung cấp các công cụ và chức năng để tải xuống dữ liệu về báo cáo tài chính và các chỉ số cơ bản của doanh nghiệp, đồng thời hỗ trợ phân tích kỹ thuật bằng cách cung cấp các biểu đồ nến, chỉ báo kỹ thuật và nhiều tính năng khác.
Vnstock là thư viện Python được thiết kế bởi tác giả Vũ Thịnh nhằm để tải dữ liệu chứng khoán Việt Nam một cách dễ dàng và hoàn toàn miễn phí. Vnstock sử dụng các nguồn cấp dữ liệu đáng tin cậy, bao gồm nhưng không giới hạn từ công ty chứng khoán và công ty phân tích thị trường tại Việt Nam. Gói thư viện được thiết kế dựa trên nguyên tắc về sự đơn giản và mã nguồn mở, hầu hết các hàm được viết dựa trên thư viện request và pandas có sẵn trên môi trường Google Colab do đó người dùng không cần cài đặt thêm các gói thư viện kèm theo.
Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch.
Bài viết này giới thiệu về những phương pháp phổ biến dựa trên công cụ Python để có thể lấy dữ liệu lịch sử một cách dễ dàng. Hẹn mọi người trong thời gian sớm nhất về những phương pháp cụ thể.
0 / 5
Trong đầu tư, đặc biệt là trong giao dịch thuật toán (quant trading), các nhà đầu tư sử dụng nhiều chiến lược khác nhau để tối ưu hóa lợi nhuận và giảm thiểu rủi ro. Hai trong số những chiến lược phổ biến nhất là đầu tư tăng trưởng (growth investing) và đầu tư giá trị (value investing).
Trong nhiều năm làm việc trong lĩnh vực giao dịch thuật toán, tôi đã chứng kiến sự phát triển vượt bậc của các phương pháp sử dụng các công cụ phân tích như tương quan và tự tương quan để xây dựng các chiến lược giao dịch mạnh mẽ. Hai yếu tố này là cốt lõi trong việc hiểu và dự đoán các xu hướng thị trường, đặc biệt trong những giai đoạn biến động mạnh và không chắc chắn. Tuy nhiên, việc ứng dụng các công cụ này đòi hỏi sự am hiểu sâu sắc về cách thức hoạt động của thị trường, các yếu tố tác động đến chúng và các mối quan hệ giữa các tài sản trong cùng một thời gian.
Xác định cổ phiếu nào là rẻ hay đắt luôn là câu hỏi khó đối với các nhà đầu tư, đặc biệt là trên thị trường, nơi mà các yếu tố như tình hình chính trị, kinh tế và đặc thù của từng ngành có thể ảnh hưởng mạnh mẽ đến giá trị cổ phiếu. Việc phân tích giá trị cổ phiếu không chỉ dựa vào các chỉ số tài chính đơn thuần mà còn phải nhìn vào nhiều yếu tố khác nhau. Cùng tìm hiểu cách nhận diện cổ phiếu rẻ hay đắt qua những nguyên tắc và ví dụ thực tế trên thị trường Việt Nam.
Trong bối cảnh phát triển mạnh mẽ của giao dịch định lượng và tài chính định lượng, Python đã trở thành ngôn ngữ không thể thiếu cho các nhà phát triển trong lĩnh vực này. Với hệ sinh thái thư viện phong phú và mạnh mẽ, Python không chỉ giúp việc phân tích dữ liệu trở nên đơn giản mà còn hỗ trợ các chiến lược giao dịch thuật toán, kiểm thử và triển khai hệ thống giao dịch
Trong bối cảnh thị trường tài chính Việt Nam hiện nay đang trải qua nhiều biến động mạnh mẽ, việc hiểu và đo lường biến động thị trường trở thành yếu tố không thể thiếu đối với các nhà đầu tư. Biến động thị trường không chỉ phản ánh sự dao động trong giá trị tài sản mà còn ảnh hưởng trực tiếp đến quyết định chiến lược đầu tư dài hạn của các nhà quản lý tài chính
Khi phát triển một chiến lược giao dịch tự động, việc chạy backtest trên dữ liệu lịch sử (historical data) là bước không thể thiếu để kiểm tra tính hiệu quả của chiến lược.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!