Underfitting là gì? Underfitting khác gì so với Overfitting

17/04/2024

11,694 lượt đọc

Underfitting (chưa khớp) là hiện tượng khi mô hình xây dựng chưa có độ chính xác cao trong tập dữ liệu huấn luyện cũng như tổng quát hóa với tổng thể dữ liệu. Khi hiện tượng Underfitting xảy ra, mô hình hoạt động kém trên cả dữ liệu huấn luyện và dữ liệu mới vì nó thiếu khả năng tìm hiểu các mối quan hệ phức tạp. 

Trong giao dịch thuật toán, underfitting có thể dẫn đến các quyết định đầu tư không hiệu quả vì mô hình không đủ khả năng phân tích và phản ứng với các tín hiệu thị trường phức tạp. Điều này có thể khiến các chiến lược giao dịch dựa trên mô hình này bỏ lỡ những cơ hội lớn hoặc không tránh được rủi ro thị trường. 

underfitting và overfitting

Nguyên nhân xảy ra hiện tượng Underfitting 

  1. Mô hình quá đơn giản: Đây là nguyên nhân phổ biến nhất của underfitting. Khi mô hình không có đủ độ phức tạp (ví dụ, không đủ lớp hoặc nút trong mạng nơ-ron, hoặc sử dụng một thuật toán quá đơn giản cho một vấn đề phức tạp), nó không thể học hỏi đầy đủ từ dữ liệu.
  2. Thiếu dữ liệu: Một mô hình có thể không được huấn luyện với đủ dữ liệu, hoặc dữ liệu không đại diện đầy đủ cho toàn bộ không gian vấn đề. Điều này khiến mô hình không có khả năng tổng quát hóa tốt khi gặp dữ liệu mới hoặc khác biệt.
  3. Đặc trưng không đủ: Mô hình có thể không có đủ thông tin đầu vào hoặc đặc trưng không được chọn lọc kỹ, dẫn đến không đủ khả năng hiểu và dự đoán các mối quan hệ trong dữ liệu.
  4. Huấn luyện không đầy đủ: Khi thời gian huấn luyện quá ngắn hoặc quá trình huấn luyện không đầy đủ, mô hình cũng có thể không phát triển đủ để hiểu được dữ liệu. Điều này cũng có thể xảy ra do sử dụng các kỹ thuật dừng sớm mà không cân nhắc kỹ.

Làm thế nào để tránh bị Underfitting trong mô hình giao dịch thuật toán

Chọn mô hình phù hợp: 

Trong giao dịch thuật toán, việc lựa chọn một mô hình phù hợp với bản chất của dữ liệu là rất quan trọng. Sử dụng mô hình quá đơn giản, như hồi quy tuyến tính cho dữ liệu có mối quan hệ phi tuyến, có thể dẫn đến underfitting, khiến mô hình có độ chệch thấp nhưng phương sai cao. Để giải quyết vấn đề này, các nhà giao dịch nên lựa chọn mô hình phù hợp với đặc tính và phân phối của dữ liệu, có khả năng xử lý các đặc điểm và tương tác liên quan đến nhiệm vụ dự đoán. Việc so sánh các mô hình khác nhau bằng cách sử dụng các chỉ số như R bình phương, sai số bình phương trung bình hoặc độ chính xác là cần thiết để chọn ra mô hình tối ưu nhất cho giao dịch thuật toán.

Việc lựa chọn mô hình không chỉ dựa trên hiệu suất mà còn cần đảm bảo rằng mô hình có khả năng thích ứng và tổng quát hóa tốt trên dữ liệu mới, không chỉ tối ưu trên dữ liệu lịch sử mà còn hiệu quả khi áp dụng vào giao dịch thực tế.

Giảm bớt điều chỉnh (Regularization)

Điều chỉnh (Regularization) là một phương pháp thường được áp dụng trong xây dựng mô hình học máy để giảm thiểu biến động của mô hình, bằng cách đưa ra hình phạt cho các tham số đầu vào có hệ số lớn. Các kỹ thuật điều chỉnh khác nhau như L1, Lasso hay dropout được sử dụng để làm giảm nhiễu và loại bỏ các điểm dữ liệu ngoại lai khỏi mô hình. Tuy nhiên, một vấn đề có thể xảy ra khi áp dụng điều chỉnh quá mức là làm cho các đặc điểm dữ liệu trở nên quá đồng nhất, khiến mô hình không còn khả năng phát hiện được xu hướng chủ đạo của dữ liệu. Điều này có thể dẫn đến tình trạng underfitting, nơi mô hình không đủ phức tạp để hiểu đúng bản chất của dữ liệu. Bằng cách giảm bớt mức độ điều chỉnh, chúng ta có thể giới thiệu thêm độ phức tạp và biến động vào mô hình, từ đó cải thiện khả năng huấn luyện và hiệu suất của mô hình.

Tăng thời gian huấn luyện

Việc kết thúc quá trình huấn luyện sớm có thể dẫn đến tình trạng underfitting, khi mô hình chưa đủ “thời gian” để “học” hết các mẫu trong dữ liệu. Do đó, việc kéo dài thời gian huấn luyện có thể giúp tránh được tình trạng này, cho phép mô hình phát triển đầy đủ khả năng của mình. Tuy nhiên, điều cực kỳ quan trọng cần lưu ý là cần tránh tình trạng huấn luyện quá mức, hay còn gọi là overfitting, nơi mô hình quá phù hợp với dữ liệu huấn luyện mà mất đi khả năng tổng quát hóa trên dữ liệu mới. Việc tìm kiếm một sự cân bằng giữa huấn luyện đủ và quá mức là chìa khóa để đạt được hiệu suất tối ưu. 

Lựa chọn đặc điểm

Các đặc điểm dữ liệu được lựa chọn cho mô hình cần phải phản ánh đúng các yếu tố ảnh hưởng đến thị trường. Trong giao dịch thuật toán, việc bổ sung các đặc điểm mới hoặc cải thiện chất lượng của các đặc điểm hiện tại (ví dụ, thông qua kỹ thuật tạo đặc điểm mới) có thể giúp mô hình phát hiện tốt hơn các mẫu thị trường và cải thiện khả năng dự đoán. 

Ví dụ, trong một mạng nơ-ron, có thể tăng số lượng nơ-ron ẩn hoặc trong một mô hình rừng ngẫu nhiên, có thể tăng số lượng cây để thêm độ phức tạp và cải thiện khả năng dự đoán của mô hình.

Sự khác biệt giữa Underfitting so với Overfitting 

Khía cạnh so sánhMô hình UnderfittingMô hình Overfitting
Loại mô hình Mô hình quá đơn giảnMô hình quá phức tạp
Độ chính xácKhông chính xác cho cả tập huấn luyện và tập kiểm thửChính xác cho tập huấn luyện nhưng không cho tập kiểm thử
Chỉ báoĐộ chệch cao do không học đủ, phương sai thấp vì thiếu đa dạngLỗi huấn luyện do học quá kỹ và phương sai cao do phức tạp quá mức
Phát hiệnDễ nhận biết thông qua lỗi lớn khi huấn luyện và kiểm thửKhó phát hiện hơn mô hình underfit nhưng được chẩn đoán khi lỗi huấn luyện thấp và lỗi kiểm thử/kiểm định cao
Cách giải quyếtMô hình phức tạp hơn, giảm bớt điều chỉnh, thêm nhiều đặc trưngMô hình đơn giản hơn, tăng điều chỉnh, giảm số lượng đặc trưng


Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Định lý Bayes: Tư duy xác suất giúp trader thích nghi với mọi biến động thị trường
29/07/2025
24 lượt đọc

Định lý Bayes: Tư duy xác suất giúp trader thích nghi với mọi biến động thị trường C

Trong lĩnh vực giao dịch tài chính, khả năng cập nhật và thích nghi với thông tin mới là yếu tố quyết định thành công lâu dài. Một trong những công cụ mạnh mẽ nhất giúp bạn làm được điều này là Định lý Bayes. Bài viết này sẽ đi sâu giải thích Định lý Bayes là gì, tại sao nó phù hợp với giao dịch định lượng tại thị trường Việt Nam, và làm thế nào để ứng dụng nó hiệu quả trong thực tế.

Delta – Chỉ số quyền chọn quan trọng mà mọi Quant Trader tại Việt Nam cần hiểu rõ
28/07/2025
27 lượt đọc

Delta – Chỉ số quyền chọn quan trọng mà mọi Quant Trader tại Việt Nam cần hiểu rõ C

Trong giao dịch định lượng nói chung và quyền chọn nói riêng, Delta luôn là chỉ số hàng đầu được các quỹ, các trader chuyên nghiệp theo dõi rất kỹ lưỡng. Delta không chỉ là một thông số lý thuyết khô khan, mà thực tế đóng vai trò quan trọng trong quản trị rủi ro, xây dựng chiến lược đầu tư hiệu quả và linh hoạt hơn trên thị trường tài chính Việt Nam.

Retail Trading và cuộc cách mạng định lượng: Cơ hội cho nhà đầu tư cá nhân tại Việt Nam
28/07/2025
6 lượt đọc

Retail Trading và cuộc cách mạng định lượng: Cơ hội cho nhà đầu tư cá nhân tại Việt Nam C

Hiện nay, dữ liệu giống như “dầu mỏ” của thế kỷ 21, càng có nhiều, càng mạnh. Nhờ vào công nghệ và các thuật toán hiện đại, đầu tư tài chính đang chuyển mình mạnh mẽ: không còn chỉ dựa vào linh cảm hay tin đồn, mà thay vào đó là các mô hình toán học, xác suất, và chiến lược định lượng.

Giao dịch ký quỹ là gì? Hiểu đúng để không “cháy” tài khoản
22/07/2025
156 lượt đọc

Giao dịch ký quỹ là gì? Hiểu đúng để không “cháy” tài khoản C

Trong những năm gần đây, giao dịch ký quỹ (margin trading) đã trở thành công cụ phổ biến trong giới đầu tư chứng khoán Việt Nam, đặc biệt khi thị trường “sóng mạnh”. Tuy nhiên, không ít nhà đầu tư mới chỉ hiểu đơn giản rằng "margin là vay tiền để mua thêm cổ phiếu", mà không nhận thức đầy đủ rủi ro kèm theo. Bài viết này sẽ giúp bạn hiểu rõ margin trading là gì, cách vận hành, các mức ký quỹ quan trọng, và chiến lược sử dụng margin sao cho khôn ngoan tại thị trường Việt Nam.

Quantitative Research (Quant) – Tương lai nghề nghiệp và lựa chọn trường phù hợp
14/07/2025
273 lượt đọc

Quantitative Research (Quant) – Tương lai nghề nghiệp và lựa chọn trường phù hợp C

Trong những năm gần đây, thị trường tài chính Việt Nam có những bước phát triển đột phá. Một xu hướng rõ nét chính là sự nổi lên của lĩnh vực Quantitative Finance (Tài chính định lượng), hay còn được gọi tắt là Quant.

Hiểu đúng về Arbitrageur và vai trò trong giao dịch định lượng
12/07/2025
192 lượt đọc

Hiểu đúng về Arbitrageur và vai trò trong giao dịch định lượng C

Trong tài chính nơi thông tin được truyền đi trong mili-giây và giá cả được điều chỉnh liên tục bởi cung cầu toàn cầu, tồn tại một nhóm nhà đầu tư đặc biệt – những người không tìm kiếm giá rẻ để "ôm lâu", cũng không đặt cược vào xu hướng dài hạn. Họ đơn thuần là những người săn lùng sai lệch giá tạm thời giữa các thị trường hoặc sản phẩm tài chính tương đồng. Họ được gọi là arbitrageurs, hay còn gọi là nhà kinh doanh chênh lệch giá.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!