07/05/2024
8,439 lượt đọc
Backtest (kiểm tra ngược) là quá trình kiểm tra lại một chiến lược giao dịch cụ thể bằng cách áp dụng vào dữ liệu quá khứ, tạo ra các mô phỏng giao dịch trong quá khứ và nhằm để đánh giá hiệu quả của chiến lược. Quá trình này giúp nhà đầu tư hiểu rõ hơn về cách chiến lược sẽ hoạt động trong thực tế, mà không cần phải mạo hiểm vốn thực sự. Backtest giúp phát hiện các điểm yếu hoặc hạn chế của chiến lược giao dịch.
Backtest giúp nhà đầu tư kiểm tra các chỉ báo kỹ thuật của mình trong nhiều thị trường, khung thời gian và điều kiện khác nhau. Nó cho phép đo lường mức lợi nhuận, tỷ lệ rủi ro, lợi nhuận, mức giảm vốn và các chỉ số khác của chiến lược để đánh giá xem chiến lược đó có phù hợp với yêu cầu hay không.
Nhà đầu tư cũng có thể tinh chỉnh và tối ưu hóa chiến lược bằng cách thay đổi các tham số, kết hợp nhiều chỉ báo hoặc thay đổi điều kiện để phù hợp với mức độ chấp nhận rủi ro.
Để sử dụng công cụ Backtest hiệu quả, nhà đầu tư cần chọn dữ liệu đáng tin cậy và phù hợp với thị trường mục tiêu. Cần thiết lập các thông số Backtest như thời gian, vốn đầu tư ban đầu, chi phí giao dịch và quy tắc quản lý rủi ro.
Sau khi chạy mô phỏng, nhà đầu tư sẽ phân tích kết quả bằng các chỉ số, thống kê và biểu đồ (lợi nhuận ròng, mức giảm tối đa, tỷ lệ Sharpe,...) để xem chiến lược có đáp ứng tiêu chí của mình không.
Python là một trong những công cụ phổ biến nhất để thực hiện việc backtest các chiến lược giao dịch, đặc biệt là trong lĩnh vực đầu tư định lượng. Các thư viện Python như Backtesting.py, Backtrader, Zipline, và Fastquant cung cấp môi trường linh hoạt cho các nhà giao dịch kiểm thử hiệu suất chiến lược dựa trên dữ liệu lịch sử.
Quy trình khi Backtest chiến lược giao dịch bằng công cụ Python
Tuy nhiên, hạn chế lớn là việc sử dụng Python có thể đòi hỏi kiến thức lập trình. Đối với những người không có kinh nghiệm, việc tùy chỉnh hoặc phát triển chiến lược giao dịch có thể phức tạp, từ đó hạn chế thời gian nghiên cứu thị trường.
Với nền tảng QM Platform thì bạn sẽ không cần có kiến thức về lập trình và chỉ cần kéo thả, nhà đầu tư có thể Backtest lại chiến lược một cách dễ dàng
Đầu tiên, tại bước Nhập điều kiện vị thế, nhà đầu tư có thể dễ dàng kéo thả các chỉ báo kỹ thuật và điều chỉnh các tham số phù hợp với khẩu vị rủi ro cá nhân với chiến lược giao dịch.
Tại bước Nhập thông tin kiểm thử, nhà đầu tư nhập các mã muốn Backtest và thông tin đầu tư phù hợp
Chi tiết về kết quả kiểm thử sẽ trả về sau vài giây chờ đợi và nhà đầu tư có thể dễ dàng đánh giá và so sánh với tiêu chí của bản thân.
Có thể thấy với việc Backtest trên nền tảng QM Platform nhà đầu tư:
📌 Không cần am hiểu về lập trình: Nền tảng QM Platform thân thiện với người dùng nhờ tính năng kéo thả, cho phép nhà đầu tư dễ dàng Backtest với các chiến lược.
📌 Hiệu suất nhanh chóng: Kết quả kiểm thử chiến lược được trả về trong vài giây với một khối lượng lớn dữ liệu, các mã cổ phiếu. Từ đó giúp đánh giá và so sánh với các tiêu chí một cách nhanh chóng.
📌 Tích hợp học máy: QM Platform đã tích hợp các mô hình học máy, giúp bạn phân tích và tối ưu chiến lược bằng cách khai thác dữ liệu lịch sử và dự đoán xu hướng thị trường.
📌 Tùy chỉnh linh hoạt: Nhà đầu tư có thể dễ dàng điều chỉnh với các chiến lược, các tham số phù hợp với khẩu vị rủi ro của bản thân.
📢 HÃY TRẢI NGHIỆM BACKTEST TẠI: QM PLATFORM NGAY HÔM NAY
0 / 5
Trong giao dịch tài chính, ROI (Return on Investment – Tỷ suất lợi nhuận đầu tư) thường được coi là thước đo quan trọng nhất. Khi nhìn vào các báo cáo hiệu suất hay quảng cáo hệ thống giao dịch, con số ROI luôn chiếm vị trí trung tâm. Nó hấp dẫn, trực quan và dễ so sánh. Tuy nhiên, ROI chỉ nói về kết quả cuối cùng, còn drawdown – mức giảm từ đỉnh đến đáy của tài khoản – mới chính là thước đo khả năng tồn tại, tâm lý và bền vững của trader.
Bạn có bao giờ tự hỏi vì sao người ta không chỉ quan tâm “lỗ bao nhiêu phần trăm” mà còn phải lo “lỗ mất bao lâu”? Thị trường lên xuống không ngừng, khoảng thời gian mất mát vốn cũng mang ý nghĩa không kém phần quan trọng. Đó chính là lúc khái niệm Drawdown Duration trở nên phổ biến
Trong ngôn ngữ định lượng, alpha là phần lợi nhuận vượt chuẩn (benchmark-adjusted return), tức lợi nhuận mà nhà đầu tư tạo ra ngoài những gì có thể lý giải bằng yếu tố thị trường chung (beta).
Trong lĩnh vực Quantitative Trading (giao dịch định lượng), Z-Test không chỉ là công cụ thống kê lý thuyết, mà còn là phương pháp đánh giá hiệu quả chiến lược, kiểm tra giả thuyết về lợi suất và rủi ro danh mục. Thông qua Z-Test, các quants có thể so sánh lợi suất thực tế của chiến lược với mức kỳ vọng, phân tích biến động và xác định xem các tín hiệu giao dịch có khác biệt đáng kể so với thị trường hay chỉ là biến động ngẫu nhiên.
Trong quantitative trading (giao dịch định lượng), khái niệm correlation (tương quan) đóng vai trò nền tảng trong việc phân tích dữ liệu tài chính. Trên thực tế, mọi quyết định giao dịch định lượng đều dựa vào khả năng định lượng mối quan hệ giữa các biến số tài chính, và correlation là thước đo chính xác nhất để làm điều này.
Trong thị trường tài chính hiện nay, tin tức và thông tin về thị trường có thể tác động mạnh mẽ đến sự biến động của giá cả cổ phiếu, chỉ số chứng khoán, hoặc các tài sản khác. Tuy nhiên, một trong những thách thức lớn mà các nhà đầu tư và trader phải đối mặt là việc xử lý một khối lượng lớn thông tin không cấu trúc từ nhiều nguồn khác nhau, chẳng hạn như từ các trang tin tức, mạng xã hội, hay báo cáo kinh tế. Làm thế nào để phân tích chính xác và nhanh chóng những tin tức này để đưa ra quyết định đầu tư hiệu quả? Câu trả lời nằm trong công nghệ Machine Readable News – một công cụ mạnh mẽ giúp khai thác và phân tích tin tức từ nguồn dữ liệu khổng lồ một cách nhanh chóng và hiệu quả.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!