15/11/2024
2,277 lượt đọc
Trong giao dịch, việc backtest một chiến lược là bước đầu tiên để đánh giá tính hiệu quả của nó. Tuy nhiên, việc chỉ dựa vào một kết quả backtest tốt để quyết định áp dụng vào thực tế là một sai lầm phổ biến và tiềm ẩn nhiều rủi ro. Một chiến lược có thể đạt hiệu suất vượt trội trên dữ liệu lịch sử đơn thuần do sự may mắn ngẫu nhiên, nhưng lại thất bại hoàn toàn khi gặp các điều kiện thị trường khác biệt trong tương lai. Đây chính là lý do mà kiểm tra tính bền vững (robustness testing) trở thành một phần quan trọng trong quy trình phát triển chiến lược giao dịch.
Kiểm tra tính bền vững không chỉ giúp chúng ta đánh giá độ tin cậy của kết quả backtest mà còn giảm thiểu rủi ro tối ưu hóa quá mức (overfitting), một trong những nguyên nhân phổ biến khiến các chiến lược giao dịch thất bại trong môi trường thực tế. Các phương pháp kiểm tra như Combinatorial Purged Cross Validation (CPCV) mang đến một góc nhìn sâu hơn về khả năng hoạt động của chiến lược trong nhiều kịch bản khác nhau. Dưới đây, chúng ta sẽ cùng phân tích chi tiết về tầm quan trọng của kiểm tra tính bền vững và các phương pháp thực hiện nó.
Tầm quan trọng của kiểm tra tính bền vững
Kiểm tra tính bền vững trong giao dịch tài chính là một tập hợp các phương pháp nhằm đánh giá mức độ tin cậy của kết quả backtest. Điều này rất cần thiết, bởi dữ liệu lịch sử chỉ đại diện cho một đường đi cụ thể trong vô số kịch bản có thể xảy ra. Một chiến lược có thể hoạt động rất tốt trên dữ liệu lịch sử, nhưng điều đó không đảm bảo rằng nó sẽ tiếp tục hiệu quả trên dữ liệu thực tế, nơi các điều kiện thị trường có thể hoàn toàn khác biệt.
Một câu hỏi quan trọng cần đặt ra trong mọi backtest là:
"Liệu kết quả này có chỉ là sản phẩm của may mắn ngẫu nhiên không?"
Câu trả lời cho câu hỏi này đòi hỏi một quá trình kiểm tra sâu rộng, trong đó chiến lược phải được áp dụng trên nhiều kịch bản khác nhau để đánh giá tính bền vững của nó. Điều này giúp giảm thiểu nguy cơ tối ưu hóa quá mức, khi chiến lược chỉ được "tùy chỉnh" để hoạt động tốt trên dữ liệu cụ thể mà không có khả năng thích nghi với điều kiện mới.
Hai cách tiếp cận chính: tái mẫu và mô phỏng
Để kiểm tra tính bền vững, hai phương pháp chính thường được sử dụng là tái mẫu (resampling) và mô phỏng (simulation):
Phương pháp này lấy mẫu lại từ dữ liệu lịch sử, tạo ra nhiều đường dữ liệu khác nhau nhưng vẫn giữ nguyên phân phối thống kê của dữ liệu gốc. Ví dụ, một chuỗi giá cổ phiếu lịch sử có thể được phân mảnh và sắp xếp lại để tạo ra các đường giá giả định nhưng vẫn duy trì các đặc tính như biến động, xu hướng, và mối quan hệ giữa các biến.
Mô phỏng dữ liệu mới dựa trên các đặc tính thống kê của dữ liệu lịch sử. Các kỹ thuật phổ biến bao gồm:
Sự khác biệt so với backtest truyền thống
Backtest truyền thống chỉ dựa trên một chuỗi dữ liệu lịch sử cụ thể. Nếu chiến lược được tối ưu hóa quá mức để phù hợp với chuỗi dữ liệu đó, hiệu suất tốt thu được sẽ không còn ý nghĩa khi áp dụng trên các dữ liệu khác. Ngược lại, kiểm tra tính bền vững yêu cầu áp dụng chiến lược trên nhiều kịch bản khác nhau, bao gồm cả các kịch bản giả định, để kiểm tra xem liệu chiến lược có thể duy trì hiệu suất trong điều kiện thị trường thay đổi hay không.
Tại sao cần CPCV?
Phương pháp kiểm tra tính bền vững truyền thống thường không phù hợp với dữ liệu chuỗi thời gian, bởi vì dữ liệu loại này có mối liên hệ chặt chẽ giữa các giá trị trong quá khứ và hiện tại. Ví dụ, một chỉ báo kỹ thuật như trung bình động (moving average) được tính dựa trên giá trị trong các giai đoạn trước, điều này tạo ra sự phụ thuộc theo thời gian. Khi áp dụng các phương pháp kiểm tra truyền thống, sự rò rỉ thông tin (information leakage) từ tương lai vào mẫu huấn luyện có thể xảy ra, dẫn đến kết quả kiểm tra bị sai lệch và làm giảm độ tin cậy của chiến lược.
CPCV được thiết kế đặc biệt để giải quyết vấn đề này. Phương pháp này:
Cách hoạt động của CPCV
Phương pháp CPCV hoạt động qua ba bước chính: phân chia dữ liệu, loại bỏ dữ liệu chồng lấn, và tạo tổ hợp mẫu.
Dữ liệu được chia thành NNN phần, trong đó KKK phần sẽ được sử dụng làm mẫu kiểm tra (out-sample), phần còn lại làm mẫu huấn luyện (in-sample). Ví dụ, nếu N=10 và K=2, bạn sẽ có 45 tổ hợp mẫu khác nhau.
Khi chia dữ liệu, CPCV đảm bảo rằng không có bất kỳ thông tin nào từ mẫu kiểm tra bị rò rỉ ngược trở lại mẫu huấn luyện. Điều này đặc biệt quan trọng trong chuỗi thời gian, nơi các giá trị trước đó có thể chứa thông tin liên quan đến các giá trị sau.
Cụ thể, CPCV sẽ:
Ví dụ, nếu bạn sử dụng dữ liệu giá cổ phiếu hàng ngày, CPCV có thể loại bỏ một khoảng cách vài ngày giữa các mẫu để ngăn chặn rò rỉ thông tin từ chỉ báo kỹ thuật như RSI hoặc trung bình động.
CPCV áp dụng phương pháp tổ hợp để tạo ra tất cả các kịch bản có thể từ dữ liệu. Phương pháp này giúp kiểm tra chiến lược giao dịch trong nhiều điều kiện khác nhau, bao gồm cả những tình huống bất lợi.
Lợi ích của tổ hợp:
Đa dạng hóa kịch bản kiểm tra: Giúp bạn đánh giá chiến lược không chỉ trên một con đường dữ liệu duy nhất, mà trên tất cả các khả năng có thể xảy ra.
Tăng cường độ tin cậy: Bằng cách kiểm tra hiệu suất chiến lược trong nhiều tình huống khác nhau, CPCV cung cấp bức tranh toàn diện về khả năng hoạt động của chiến lược.
Bước 1: Áp dụng CPCV
Mục tiêu
Tạo ra nhiều kịch bản kiểm tra khác nhau bằng cách chia dữ liệu chuỗi thời gian thành các phần mẫu huấn luyện (in-sample) và mẫu kiểm tra (out-sample).
Thực hiện
Dữ liệu được chia thành NNN phần, trong đó KKK phần được sử dụng làm mẫu kiểm tra và N−KN-KN−K phần còn lại là mẫu huấn luyện.
Ví dụ: Với N=10 và K=2, sẽ có 45 tổ hợp mẫu khác nhau để kiểm tra.
Dựa trên mẫu huấn luyện, tối ưu hóa các tham số của chiến lược (ví dụ: khoảng thời gian của SMA hoặc chỉ số RSI).
Sau đó, kiểm tra hiệu suất của các tham số tối ưu trên mẫu kiểm tra.
Ví dụ cụ thể
Giả sử bạn đang tối ưu hóa chiến lược dựa trên trung bình động đơn giản (Simple Moving Average - SMA) và chỉ số RSI:
Kết quả từ bước này bao gồm hai bảng:
Một bảng thể hiện hiệu suất của chiến lược trên mẫu huấn luyện.
Một bảng khác thể hiện hiệu suất trên mẫu kiểm tra.
Bước 2: Đánh giá xác suất Overfitting (PBO)
PBO đo lường khả năng chiến lược bị tối ưu hóa quá mức. Quá trình thực hiện như sau:
Ví dụ: SMA 60 và RSI 13.
Nếu bộ tham số được xếp hạng 10/50 trong mẫu kiểm tra, bạn có thể chuyển đổi thứ hạng này thành giá trị logit:
Tính PBO:
Một logit dương được coi là không bị overfitted. PBO là tỷ lệ giữa số lượng logit âm và tổng số logit.
Bước 3: Tính xác suất đạt Sharpe Ratio dương (PPSR)
Để tính PPSR:
Lấy tỷ lệ Sharpe từ mẫu kiểm tra tương ứng với bộ tham số tốt nhất trong mẫu huấn luyện.
Lặp lại cho tất cả các kịch bản để tạo ra phân phối tỷ lệ Sharpe.
Tính xác suất đạt Sharpe Ratio trên một ngưỡng nhất định:
Ví dụ: Nếu có 40 trong số 45 Sharpe Ratio vượt ngưỡng t=1, xác suất PPSR là:
P(t<SR)=45/40 = 0.89(89%)
Một trong những lợi ích lớn nhất của CPCV là khả năng đánh giá xem chiến lược có bị tối ưu hóa quá mức (overfitting) trên dữ liệu lịch sử hay không.
Một chiến lược bị tối ưu hóa quá mức thường hoạt động rất tốt trên dữ liệu lịch sử, nhưng lại thất bại khi áp dụng vào thị trường thực tế. Điều này xảy ra khi chiến lược "học thuộc" các mẫu dữ liệu cụ thể thay vì nắm bắt các quy luật tổng quát của thị trường.
CPCV tạo ra nhiều kịch bản kiểm tra khác nhau, đảm bảo rằng chiến lược không chỉ hoạt động tốt trên một con đường lịch sử duy nhất mà còn trên các kịch bản khác nhau được tạo từ dữ liệu gốc. Nếu tỷ lệ Overfitting (PBO) thấp, chiến lược của bạn được đánh giá là đáng tin cậy hơn.
CPCV sử dụng phương pháp tổ hợp để tạo ra hàng chục, thậm chí hàng trăm kịch bản kiểm tra khác nhau. Điều này mang lại hai lợi ích chính:
Mỗi kịch bản đại diện cho một điều kiện thị trường khác nhau, giúp bạn đánh giá chiến lược trong nhiều tình huống tiềm năng. Ví dụ, một chiến lược có thể hoạt động tốt trong xu hướng tăng giá, nhưng CPCV sẽ giúp bạn kiểm tra xem nó có giữ được hiệu suất trong thị trường đi ngang hoặc giảm giá hay không.
Thay vì chỉ dựa trên một kịch bản lịch sử cụ thể, việc kiểm tra chiến lược trên nhiều kịch bản cung cấp cái nhìn toàn diện hơn về tính hiệu quả và độ ổn định của chiến lược.
CPCV không chỉ giới hạn ở việc tính xác suất Overfitting (PBO) và xác suất đạt tỷ lệ Sharpe dương (PPSR). Phương pháp này có thể mở rộng để tính toán bất kỳ chỉ số nào bạn cần, tùy thuộc vào mục tiêu cụ thể của bạn.
Tùy chỉnh chỉ số:
Bạn có thể sử dụng CPCV để phân tích các chỉ số khác như:
Tính linh hoạt:
Với khả năng kết hợp nhiều chỉ số, CPCV giúp bạn xây dựng một bộ tiêu chí đánh giá toàn diện, từ đó hỗ trợ ra quyết định tối ưu hơn khi lựa chọn chiến lược.
Tuy nhiên, CPCV cũng có những hạn chế:
CPCV chỉ đánh giá tính bền vững, không giúp tìm ra tham số tốt nhất cho giao dịch thực tế.
Để kết quả đáng tin cậy, bạn cần dữ liệu lịch sử đủ lớn.
CPCV vẫn phụ thuộc vào dữ liệu lịch sử, có thể không phản ánh đầy đủ các điều kiện thị trường tương lai.
Kiểm tra tính bền vững, đặc biệt là thông qua phương pháp Combinatorial Purged Cross Validation (CPCV), là một công cụ không thể thiếu để đánh giá tính tin cậy của chiến lược giao dịch. Tuy nhiên, như bất kỳ phương pháp nào khác, CPCV không phải là giải pháp hoàn hảo. Để tận dụng tối đa lợi ích từ CPCV và giảm thiểu các hạn chế, bạn nên kết hợp nó với các phương pháp kiểm tra và tối ưu hóa khác.
Việc áp dụng CPCV không chỉ giúp bạn tự tin hơn về tính bền vững của chiến lược mà còn hỗ trợ đưa ra quyết định sáng suốt hơn trong giao dịch thực tế.
0 / 5
Warren Buffett, người được mệnh danh là Oracle of Omaha, lại một lần nữa chứng minh tại sao ông luôn được coi là một trong những nhà đầu tư vĩ đại nhất. Trong năm 2025, Berkshire Hathaway của ông tiếp tục lập kỷ lục mới, với chín phiên giao dịch kỷ lục. Trong khi đó, S&P 500 lại gặp khó khăn, giảm 3,5% tính đến hiện tại.
Khi QM Capital chia sẻ lại chiến lược Momentum Trading, QM Capital không xem đây là một phương pháp có thể nhân đôi tài khoản trong thời gian ngắn. Thay vào đó, lý do team lựa chọn tái đề cập đến chiến lược này là bởi vì đây là một trong số rất ít các hệ thống đầu tư được xây dựng dựa trên cơ sở học thuật vững chắc, có tính kỷ luật cao và đã được kiểm chứng qua thời gian tại cả các thị trường phát triển như Hoa Kỳ lẫn các thị trường như Việt Nam.
Mỗi năm, Bloomberg thường thu thập các dự báo từ các chuyên gia về thị trường S&P 500. Những dự báo này được thể hiện dưới dạng những cột màu hồng, trong khi kết quả thực tế lại được đánh dấu bằng những chấm đen. Dữ liệu này đã được theo dõi suốt hơn 25 năm, và kết quả là: phần lớn thời gian, thị trường thực tế lại đi xa hơn hoặc ngược lại với những gì các chuyên gia dự báo.
Trong đầu tư, đặc biệt là trong giao dịch thuật toán (quant trading), các nhà đầu tư sử dụng nhiều chiến lược khác nhau để tối ưu hóa lợi nhuận và giảm thiểu rủi ro. Hai trong số những chiến lược phổ biến nhất là đầu tư tăng trưởng (growth investing) và đầu tư giá trị (value investing).
Trong nhiều năm làm việc trong lĩnh vực giao dịch thuật toán, tôi đã chứng kiến sự phát triển vượt bậc của các phương pháp sử dụng các công cụ phân tích như tương quan và tự tương quan để xây dựng các chiến lược giao dịch mạnh mẽ. Hai yếu tố này là cốt lõi trong việc hiểu và dự đoán các xu hướng thị trường, đặc biệt trong những giai đoạn biến động mạnh và không chắc chắn. Tuy nhiên, việc ứng dụng các công cụ này đòi hỏi sự am hiểu sâu sắc về cách thức hoạt động của thị trường, các yếu tố tác động đến chúng và các mối quan hệ giữa các tài sản trong cùng một thời gian.
Xác định cổ phiếu nào là rẻ hay đắt luôn là câu hỏi khó đối với các nhà đầu tư, đặc biệt là trên thị trường, nơi mà các yếu tố như tình hình chính trị, kinh tế và đặc thù của từng ngành có thể ảnh hưởng mạnh mẽ đến giá trị cổ phiếu. Việc phân tích giá trị cổ phiếu không chỉ dựa vào các chỉ số tài chính đơn thuần mà còn phải nhìn vào nhiều yếu tố khác nhau. Cùng tìm hiểu cách nhận diện cổ phiếu rẻ hay đắt qua những nguyên tắc và ví dụ thực tế trên thị trường Việt Nam.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!